

Murashige and Skoog Medium

With Vitamins, Sucrose and CleriGel™ Without Calcium Chloride

Product Code: PT011G

Product Description:

Murashige and Skoog Medium (MS) was originally formulated by Murashige and Skoog in 1962 to optimize tobacco callus bioassay system for facilitating the study of cytokinins. Since then, it is widely used for micro propagation, organ culture, callus culture and suspension culture. The formulation is a nutrient blend of inorganic salts, vitamins, amino acid, carbohydrate and gelling agent.

Murashige and Skoog Medium (MS) provides all essential macroelements and microelements. Potassium dihydrogen phosphate serves as a source of phosphate. Microelements like Boron, Manganese, Molybdenum, Copper, Iron and Zinc play vital role in plant metabolism. Boron plays a key role in carbohydrate metabolism. Thiamine, pyridoxine, nicotinic acid act as enzymatic cofactors in universal pathways including glycolysis and TCA cycle along with primary and secondary metabolism in the plants. Glycine serves as a source of amino acid.

CleriGelTM, a gellan gum is used as an alternative to agar. It offers several advantages over conventional agar as it sets a clear gel which assists easy observation of cultures and their possible contamination. Unlike agar, gel strength of CleriGelTM is unaffected over a wide range of pH and contains no contaminants like phenolic compounds that can be toxic to plant tissues. It solidifies uniformly and rapidly.

The product is plant tissue culture tested but it is the sole responsibility of the user to ensure the suitability of the medium for individual species.

Composition:

Ingredients	mg/L
MACROELEMENTS	
Ammonium nitrate	1650.000
Magnesium sulphate	180.690
Potassium nitrate	1900.000

Potassium phosphate monobasic	170.000
MICROELEMENTS	
Boric acid	6.200
Cobalt chloride hexahydrate	0.025
Copper sulphate pentahydrate	0.025
EDTA disodium salt dihydrate	37.300
Ferrous sulphate heptahydrate	27.800
Manganese sulphate monohydrate	16.900
Molybdic acid (sodium salt)	0.213
Potassium Iodide	0.830
Zinc sulphate heptahydrate	8.600
VITAMINS	
myo-Inositol	100.000
Nicotinic acid (free acid)	0.500
Pyridoxine HCl	0.500
Thiamine hydrochloride	0.100
AMINO ACID	
Glycine	2.000
CARBOHYDRATE	
Sucrose	30000.000
GELLING AGENT	3000.000
CleriGel TM (Gelrite)	
Total(gms/litre)	37.1

Material required but not provided:

- Autoclaved distilled water
- Plant growth regulators
- 1N NaOH/HCl
- Calcium Chloride (PCT0017 or PCT0004)

Precautions:

- Ensure appropriate pH of the medium before addition of gelling agent as acidic pH will lead to decreased gelation resulting in semi solid flowing gel while alkaline pH will lead to formation of hardened gel.
- Use of Distilled water / Tissue culture grade water is recommended for media preparation as tap water or lower grade water may lead to salt precipitation and improper gelation.

• Avoid preparation of concentrated solutions, as it will lead to precipitation of salts.

Directions:

- Reconstitute medium by adding required quantity of powder in two-third of total volume with constant, gentle stirring till the medium gets completely dissolved.
- Add heat stable supplements prior to autoclaving.
- Make up the final volume with distilled water.
- \bullet Adjust the pH of the medium to 5.75 ± 0.5 using 1N NaOH/ HCl.
- Heat the medium to boiling till complete dissolution of gelling agent.
- Sterilize the medium by autoclaving at 15 lbs and 121°C for 15 min.
- Cool the autoclaved medium to about 45°C before adding heat labile supplements.
- Aseptically dispense the desired amount of medium under a laminar airflow unit in sterile culture vessels.

Quality Control:

Appearance

White to off-white, homogenous, free flowing powder

Solubility

37.1 gms/litre soluble after boiling in distilled water

Colour and Clarity

Colourless to light yellow solution, clear gel formed on cooling

Gelling

Firm gel formed at pH : 5.7 ± 0.5

pH at 25°C 4.00 - 5.00

Plant Tissue Culture Test

The growth promoting properties of medium is assessed by providing plant cultures with relative humidity of about $60\%\pm2\%$, temperature $22^{\circ}C\pm2^{\circ}C$ and photoperiod of about 16:8. The plant species showed actively growing callus and shoots with no structural, necrotic and toxic deformity.

Storage and Shelf Life:

- The plant tissue culture medium powder is extremely hygroscopic and must be stored at 2-8°C in air tight containers.
- Preferably, entire content of each package should be used immediately after opening.
- Use before the expiry date.

Revision: 01 / 2017

Disclaimer:

User must ensure suitability of the product(s) in their application prior to use. Products conform solely to the information contained in this and other related HiMedia™ publications. The information contained in this publication is based on our research and development work and is to the best of our knowledge true and accurate. HiMedia™ Laboratories Pvt Ltd reserves the right to make changes to specifications and information related to the products at any time. Products are not intended for human or animal or therapeutic use but for laboratory, diagnostic , research or further manufacturing use only, unless otherwise specified. Statements contained herein should not be considered as a warranty of any kind, expressed or implied, and no liability is accepted for infringement of any patents.