

Technical Data

Buffered Charcoal Yeast Extract Agar Medium(BCYE Medium) Intended use

Recommended for selective isolation and cultivation of Legionella species from cooling towers, all kinds of water samples and other materials. The composition and performance criteria of this medium are as per the specifications laid down in ISO 11731-1: 2017 & 11731-2: 2017.

Composition**

BCYE Agar As per ISO 11731		BCYE Agar	M813I
Ingredients	g/ L	Ingredients	g/ L
Yeast extract (Bacteriological grade)	10.000	Yeast extract	10.000
Activated Charcoal	2.000	Activated Charcoal	2.000
α-ketoglutarate, monopotassium salt	1.000	α-ketoglutarate, monopotassium salt	1.000
ACES Buffer	10.000	ACES Buffer	10.000
Agar	12.000	Agar	12.000
Detection by drawide (VOU) (nellate)	2 000	Final pH (at 25°C)	6.8 ± 0.2
Potassium hydroxide (KOH) (pellets)	2.800	Legi Growth Supplement	FD041A
L-cystine hydrochloride monohydrate	0.400	w/o SS (Twin Pack)	
Iron (III) pyrophosphate	0.250	Part A	"
Final pH (at 25°C)	6.8±0.2	L-Cysteine hydrochloride Part B	200mg
		Ferric pyrophosphate, soluble	125mg
		Distilled water	5ml
Selective culture medium			

For Buffered charcoal yeast extract aga with selective supplement (BCYE+AB)	r	PCP Supplement	FD347
Polymyxin B sulfate Sodium cefazolin Pimaricin (syn Natamycin)	80,000 IU 0.009 0.070	Polymyxin B sulfate Cefazolin sodium Pimaricin (Natamycin)	80,000 IU 0.009 0.070
For Buffered charcoal yeast extract aga with selective supplement (BCYE+GVP		GVPC Selective Supplement	FD143

with selective supplement (BC1E)			
Ammonium-free Glycine	3.000	Glycine	1.500g
Vancomycin hydrochloride	0.001	Vancomycin hydrochloride	0.500mg
Polymyxin B sulphate	80,000 IU	Polymyxin B sulphate	40000IU
Cycloheximide	0.080	Cycloheximide	40mg

For Modified Widomski Yee (MWY	()	MWY Selective Supplement	FD040
Polymyxin B sulphate	50,000 IU	Polymyxin B sulphate	25000Unit
Ammonium-free glycine	3.000g	Glycine	1.500g
Anisomycin	0.080	Anisomycin	40mg
Vancomycin hydrochloride	0.001	Vancomycin	0.500mg
Bromo thymol blue	0.010	Bromo thymol blue	5mg
Bromo cresol purple	0.010	Bromo cresol nurnle	5mg

Directions

Suspend 35.0 grams in 1000 ml purified/distilled water. Add 2.4 grams KOH pellets and mix to dissolve. Heat to boiling to dissolve the medium completely. Sterilize by autoclaving at (121 ± 3) °C for (15 ± 1) minutes. Cool to 45-51°C. Aseptically add sterile rehydrated contents of 2 vials each of Legi Growth Supplement w/o SS (Twin Pack) (FD041A, Part A and Part B). Mix well and pour into sterile Petri plates with constant stirring to ensure that charcoal particles get evenly distributed. Note: As per standard it is recommended to use 2.8 grams of Potassium hydroxide pellets.

HiMedia Laboratories Technical Data

Buffered charcoal yeast extract agar without L-cysteine (BCYE-cys)

Prepare same as BCYE Agar composition and aseptically add contents of two vials of Legi Growth Supplement w/o SS (Twin Pack) (FD041A, Part B only).

For Buffered charcoal yeast extract agar with selective supplement (BCYE+AB)

Aseptically add rehydrated contents of one vial of PCP Supplement (FD347).

For Buffered charcoal yeast extract agar with selective supplement

Aseptically add rehydrated contents of two vials of GVPC Selective Supplement (FD143).

For Modified Widomski Yee (MWY) Agar:

Aseptically add the rehydrated contents of one vial of MWY Selective Supplement (FD040- per 100 ml).

Principle And Interpretation

Feeley et al (1) originally formulated Charcoal Yeast Extract (CYE) Agar. This medium was a modification of the existing F-G Agar (2). F-G Agar had starch and tryptone as ingredients in the composition. Feely et al (1,2) replaced these two with charcoal and yeast extract respectively, and reported better recovery of *Legionella pneumophilla*. Later Paseulle (3) reported that supplementation of the Charcoal Yeast Agar with ACES buffer improved the performance of the medium. Edelstein (4) further modified the medium by adding alpha-ketoglutarate. This addition helped in improving the sensitivity of the medium. The formulation of Buffered Charcoal Yeast Extract Agar Base is as per specification laid in ISO 11731-2 (5). *Legionella* species are non-spore forming, narrow, gram-negative rods. *Legionella* causes pneumonia (Legionnaires disease) (6) or a milk, febrile disease (Pontiac fever). They do not oxidize or ferment carbohydrates in conventional media or grow on sheep blood agar. Growth is much better and more rapid on Buffered Charcoal Yeast Extract Agar (2,7). Amino acids are the major sources of energy for *Legionella*. The amino acid L-cystine holds an absolute requirement as it plays major role in growth metabolism of *Legionella* (8). This amino acid as well as ferric pyrophosphate helps for the growth of *Legionella*.

The media contains charcoal, which acts as detoxicant. Yeast extract acts as a rich source of vitamins, nitrogen as well as carbon. ACES Buffer maintains optimal pH for growth while L-cystine hydrochloride; ferric pyrophosphate and α -ketoglutarate stimulate growth of Legionella species. For selective isolation, antibiotic supplements can be used to suppress contaminating microorganisms. PCP Supplement (FD347) containing Polymyxin B, Sodium cefazolin and Pimaricin or Legionella (GVPC) Selective Supplement (FD143) containing glycine, Polymyxin B sulphate, vancomycin and cycloheximide or MWY Selective Supplement (FD040) containing glycine, polymyxin B, anisomycin, vancomycin, bromothymol blue and bromocresol purple (9) are often used. Wear gown, mask and gloves while handling Legionella cultures. Work in a safety hood.

Type of specimen

Water samples

Specimen Collection and Handling:

For water samples, follow appropriate techniques for sample collection, processing as per guidelines and local standards (5). After use, contaminated materials must be sterilized by autoclaving before discarding.

Warning and Precautions:

Read the label before opening the container. Wear protective gloves/protective clothing/eye protection/ face protection. Follow good microbiological lab practices while handling specimens and culture. Standard precautions as per established guidelines should be followed while handling specimens. Safety guidelines may be referred in individual safety data sheets.

Limitations:

- 1. Individual organisms differ in their growth requirement and may show variable growth patterns on the medium.
- 2. Each lot of the medium has been tested for the organisms specified on the COA. It is recommended to users to validate the medium for any specific microorganism other than mentioned in the COA based on the user's unique requirement.
- 3. Further biochemical confirmation has to be carried out for further confirmation.

Performance and Evaluation

Performance of the medium is expected when used as per the direction on the label within the expiry period when stored at recommended temperature.

HiMedia Laboratories Technical Data

Quality Control

Appearance

Grey to black homogeneous free flowing powder

Gelling

Firm, comparable with 1.2% Agar gel.

Colour and Clarity of prepared medium

Grey-black coloured opalescent gel forms in Petri plates.

Reaction

Reaction of 3.5% w/v aqueous solution at 25°C. pH: 6.8±0.2

рH

6.60 - 7.00

Cultural Response

Productivity: Cultural response was observed after an incubation (90% humid atmosphere) at 36 ± 2 °C for 2-5 days, with added sterile Legi Growth Supplement w/o SS (Twin Pack) (FD041A, Part A and Part B). Recovery rate is considered as >=50% on BCYE

Selectivity: Cultural response was observed after an incubation (90% humid atmosphere) at 36 ± 2 °C for 2-5 days, with added sterile Legi Growth Supplement w/o SS (Twin Pack) (FD041A, Part A and Part B).

Organism	Inoculum (CFU)	Growth	Recovery	Colour of colony
Productivity				
Legionella pneumophila ATCC 33152 (00107*)	50-100	luxuriant	>=50%	white-grey-blue purple colonies with an entire edge exhibiting a characteristic ground glass appearance
Legionella pneumophila ATCC 33156 (00180*)	50-100	luxuriant	>=50%	white-grey-blue purple colonies with an entire edge exhibiting a characteristic ground glass appearance
Legionella anisa ATCC 35292 (00106*)	50-100	luxuriant	>=50%	white-grey-blue purple colonies with an entire edge exhibiting a characteristic ground glass appearance (incubated for 5-10 days)
Selectivity				
Enterococcus faecalis ATCC 29212 (00087*)	>=104	inhibited	0%	
Enterococcus faecalis ATCC 19433 (00009*)	>=104	inhibited	0%	
Escherichia coli ATCC 25922 (00013*)	50-100	none-poor	<=10%	
Escherichia coli ATCC 8739 (00012*)	50-100	none-poor	<=10%	
^Pseudomonas paraeruginosa ATCC 9027 (00026*)	50 -100	none-poor	<=10%	
Pseudomonas aeruginosa ATCC 27853 (00025*)	50 -100	none-poor	<=10%	

^ Formerly known as Pseudomonas aeruginosa

Key: (*) - Corresponding WDCM numbers

HiMedia Laboratories Technical Data

Storage and Shelf Life

Store between 10-30°C in a tightly closed container and the prepared medium at 2-8°C. Use before expiry date on the label. On opening, product should be properly stored dry, after tightly capping the bottle in order to prevent lump formation due to the hygroscopic nature of the product. Improper storage of the product may lead to lump formation. Store in dry ventilated area protected from extremes of temperature and sources of ignition Seal the container tightly after use. Product performance is best if used within stated expiry period.

Disposal

User must ensure safe disposal by autoclaving and/or incineration of used or unusable preparations of this product. Follow established laboratory procedures in disposing of infectious materials and material that comes into contact with sample must be decontaminated and disposed of in accordance with current laboratory techniques (10,11).

Reference

- 1. Feeley J. C., Gibson R. J., Gorman G. W. et al, 1979, J. Clin. Microbiol., 10:437.
- 2. Feeley J. C., Gorman G. W., Weaver R. E. et al, 1978, J. Clin. Microbiol., 8: 320-325.
- 3. Paseulle, Feely et al, 1980, J. Infect. Dis., 191:727.
- 4. Edelstein P. H., 1981, J. Clin. Microbiol., 14:298.
- 5. Water quality-Detection and enumeration of Legionella-Part 2 Direct membrane filtration method for waters with low bacterial counts International Organization for Standardization (ISO), 2017, Draft ISO/DIS, 11731-1& 11731-2
- 6.Broome C. V., Fraser D. W., 1979, Epidemiol. Rev 1:1-16.
- 7.Jones G. T., Hebert G. A., (Eds.), 1979, US Department of Health, Education and Welfare Publication No. (CDC)79-8375, Atlanta, Centers for Disease Control.
- 8. George J. R. et al, 1980, J. Clin. Microbiol., 11:286
- 9. Vicker R., Brown and Garrity, 1981, J. Clin. Microbiol., 13:380.
- 10. Isenberg, H.D. Clinical Microbiology Procedures Handbook. 2nd Edition.
- 11. Jorgensen, J.H., Pfaller, M.A., Carroll, K.C., Funke, G., Landry, M.L., Richter, S.S and Warnock., D.W. (2015) Manual of Clinical Microbiology, 11th Edition. Vol. 1.

Revision: 05/2024

Disclaimer:

User must ensure suitability of the product(s) in their application prior to use. Products conform solely to the information contained in this and other related HiMedia™ publications. The information contained in this publication is based on our research and development work and is to the best of our knowledge true and accurate. HiMedia™ Laboratories Pvt Ltd reserves the right to make changes to specifications and information related to the products at any time. Products are not intended for human or animal or therapeutic use but for laboratory, diagnostic, research or further manufacturing use only, unless otherwise specified. Statements contained herein should not be considered as a warranty of any kind, expressed or implied, and no liability is accepted for infringement of any patents.