

Technical Data

Christensen Citrate Sulphite Agar

M495

Christensen Citrate Sulphite Agar is used for the differentiation of enteric bacilli on the basis of citrate utilization and hydrogen sulphide production.

Composition**

Gms / Litre
3.000
0.200
0.500
0.100
0.400
1.000
5.000
0.080
0.012
14.000
6.7±0.2

^{**}Formula adjusted, standardized to suit performance parameters

Directions

Suspend 24.29 grams in 1000 ml distilled water. Heat to boiling to dissolve the medium completely. Dispense into test tubes. Sterilize by autoclaving at 12 to 15 lbs pressure (118 to 121°C) for 15 minutes. Cool the tubes in slanted position to give slants with generous butts.

Principle And Interpretation

Christensen Citrate Sulphite Agar is a modification of the Christensen Iron Agar (1). This modification was described by Edwards and Ewing (2). Christensen reported that all members of genera *Escherichia, Enterobacter, Citrobacter* and *Salmonella* as well as Alkalescens-Dispar were capable of utilizing citrate as a source of energy while *Shigella* species failed to utilize citrate.

Organisms that metabolize citrate as a sole source of carbon cleave citrate to oxaloacetate and acetate via the citritase enzyme. Another enzyme, oxaloacetate decarboxylase, then converts oxaloacetate to pyruvate and CO2. Further, this CO2 combines with sodium and water to form sodium carbonate, an alkaline compound (3). As a result, the pH of medium rises and the indicator, phenol red changes from orange red to cerise. Presence of the cerise colour indicates a positive finding for citrate utilization. Medium constituent yeast extract provide the necessary nutrients mainly nitrogenous and vitamins for the growth of the organisms.

L-Cysteine hydrochloride is a reducing agent. Dextrose is the fermentable carbohydrate. Sodium citrate is the energy source for citrate utilizing organisms. Care should be taken while inoculating, as, a too heavy inoculum may give a false positive result (4).

The reduction of ferric ammonium citrate to iron sulphide by H2S producing organisms is indicated by blackening of the medium. Sodium thiosulphate enhances H2S production. Strong positive cultures upon prolonged incubation turn the entire butt black. Some members of *Salmonella* like *Salmonella* Typhi are weakly positive and require 2-5 days for hydrogen sulphite production.

Quality Control

Appearance

Light yellow to light pink homogeneous free flowing powder

Gelling

Firm, comparable with 1.4% Agar gel.

HiMedia Laboratories Technical Data

Colour and Clarity of prepared medium

Orange red coloured, very slightly opalescent gel forms in tubes as slants

Reaction

Reaction of 2.42% w/v aqueous solution at 25°C. pH: 6.7±0.2

pН

6.50-6.90

Cultural Response

M495: Cultural characteristics observed after an incubation at 35-37°C for 18-24 hours.

Organism	Inoculum (CFU)	Growth	Citrate Utilisation	H2S
Enterobacter aerogenes	50-100	luxuriant	positive	negative
ATCC 13048			reaction, cerise	reaction,no
			colour	colour change
Escherichia coli ATCC	50-100	luxuriant	negative	negative
25922			reaction, no	reaction,no
			colour change	colour change
Salmonella Typhimurium	50-100	luxuriant	positive	positive
ATCC 14028			reaction, cerise	reaction,
			colour	blackening of
				medium
Salmonella Enteritidis ATC	C50-100	luxuriant	positive	positive
13076			reaction, cerise	reaction,
			colour	blackening of medium
Klebsiella pneumoniae	50-100	luxuriant	weakly	negative
ATCC 13883			positive,	reaction,no
			orange-pink colour	colour change
Shigella flexneri ATCC	50-100	luxuriant	negative	negative
12022			reaction, no	reaction,no
			colour change	change
Shigella sonnei ATCC 25931	<i>l</i> 50-100	luxuriant	negative	negative
-			reaction, no	reaction,no
			colour change	change

Storage and Shelf Life

Store below 30°C in tightly cloased container and the prepared medium at 2 - 8°C. Use before expiry date on the label.

Reference

- 1. Christensen W.B., 1949, Research Bull., Weld County Health Dept., Greenley Co., 1:3.
- 2.Edwards P.R. and Ewing W. H., 1955 and 1962, Identification of Enterobacteriaceae Minneapolis, Burgess Publishing Co., pg. 179 and 242.
- 3. Horward B., 1994, Clinical and Pathogenic Microbiology, 2nd ed., Mosby Year Book, Inc.
- 4.Branson D., 1972, Methods in Clinical Bacteriology, Springfield, III: C. Thomas, 15.

Revision : 2 / 2015

Disclaimer:

User must ensure suitability of the product(s) in their application prior to use. Products conform solely to the information contained in this and other related HiMedia™ publications. The information contained in this publication is based on our research and development work and is to the best of our knowledge true and accurate. HiMedia™ Laboratories Pvt Ltd reserves the right to make changes to specifications and information related to the products at any time. Products are not intended for human or animal or therapeutic use but for laboratory, diagnostic, research or further manufacturing use only, unless otherwise specified. Statements contained herein should not be considered as a warranty of any kind, expressed or implied, and no liability is accepted for infringement of any patents.