

Serum Free Medium and Feed

HiMedia Laboratories Pvt. Ltd Animal Cell Culture Research & Development

Clone specific customization Media & feed

Clonesecurity

ELLB**üO**[™]

Spent media analysis

Systematic experimentation & Comprehensive analysis

* The data present in this dossier is obtained as a part of the project sponsored by DBT-BIRAC under National Biopharma Mission Programme

INDEX

Table of Contents	Page No.
Bioproduction process flow overview	03
What we offer – The Products	04
Performance characteristics of Trastuzumab producing CHO clone	07
Cultural performance	12
Protein Characterization	13
Potency test and functional assays	15
Performance characteristics of Bevacizumab producing CHO clone	17
Cultural performance	22
Protein Characterization	23
Potency test and functional assays	25
What we offer – Services	26

- surface method
- Feed development
- Feeding strategy

We are there to assist you at every step

MEDIA & FEEDS

SERUM FREE MEDIUM

CHOin1™ Serum Free CHO Medium Animal Component Free, Chemically Defined With Pluronic F-68® Without L-Glutamine and Sodium bicarbonate SFM007AP-10L SFM007AP-50L

UNIVERSAL FEED SUPPLEMENT

CHOin1[™] Feed Medium

Chemically Defined, Animal component-free With D-Glucose and Pluronic F68[®] Without L-Glutamine and Phenol red SFF006P-1L SFF006P-5L

EVALUATED ON

Clone type	Product	Disease treated	Mechanism of action
CHO-GS	Trastuzumab	HER2-positive breast cancer	Trastuzumab works by attaching itself to the HER2 receptors on the surface of breast cancer cells and blocking them from receiving growth signals. By blocking the signals, Trastuzumab can slow or stop the growth of the breast cancer. Trastuzumab is an example of an immune targeted therapy. In addition to blocking HER2 receptors, Trastuzumab can also help fight breast cancer by alerting the immune system to destroy cancer cells onto which it is attached
CHO-GS	Bevacizumab	Brain tumor and cancers of the kidney, colon, rectum, lung, or breast	Bevacizumab targets VEGF-A, an isoform of VEGF that stimulates endothelial cell proliferation and subsequent migration. Bevacizumab specifically binds to the VEGF-A protein, thereby inhibiting the process of angiogenesis
CHO-DHFR	Adalimumab	Rheumatoid arthritis, juvenile idiopathic arthritis, ankylosing spondylitis, inflammatory bowel disease, skin and joint manifestations of psoriasis.	Adalimumab specifically targets and blocks TNF-alpha which contributes to the inflammation that causes the abscesses, inflammatory nodules.

SYSTEMATIC SCALE UP APPROACH

Scale I

Scale I: High throughput screening (10 – 15ml)

//

Scale III

Scale III: Lab scale bioreactors (0.4L- 1L)

03

Process Optimization

Process control at Lab scale

bioreactors for productivity

Scale IV

Scale IV: Complete Process Optimization (10L)

Process Validation

Suitability analysis for quantitative and qualitative productivity of the process for commercial application

Accuracy by Automization Screening of >1000 media combinations in Bioreactor tubes

Scale II:

02

factors

Growth Factor

Optimization (50ml)

Optimized Medium and Feed... Assurance of high productivity

TRASTUZUMAB CLONE

PERFORMANCE CHARACTERISTICS

Trastuzumab producing CHO clone

Experimental conditions

Culture parameters	Details			
Culture Vessel	: Scale up from Bioreactor tubes (50ml) to Sartorius B-Twin 10L Bioreactors Data represented here is for Sartorius B-Twin 10L Bioreactors			
Process type	: Fed-batch culture			
Combination details	 Medium SFM007AP + Feed (SFF006P) CD-CHO (Thermo) + Efficient Feed B (Thermo) 			
Cell line	: CHO clone producing mAb Trastuzumab			
Culture conditions	: 80rpm, 37°C			
Instruments used	 Sartorius B-Twin 10L Bioreactors Biochemical analyzer (Nova Biomedical) UBLS (InC titum estimation 2 shows to rise tion) 			
No. of vessels per combination	: 1			
Seeding density	: 0.5 million cells per ml			
Seeding viability	: 96.33%			
Duration of experiment	: 12 - 15 days			
Test parameters and frequency	 Cell density: Daily Cell viability: Daily IVCC: Daily IgG Titer: Alternate day after Day 8 IgG Characterization: Harvested sample 			
	6. IgG potency testing and functional assays			

Cell density (Million cells/ml)

Combination						Ir	cubation	time (Da	y)					
combination	0	1	3	4	5	6	7	8	9	10	11	12	13	14
SFM007AP + SFF006P	0.40	0.80	1.30	2.60	5.07	6.95	8.10	10.00	10.56	10.89	10.66	8.20	6.64	5.20
CD-CHO+ Feed	0.42	0.72	1.40	2.30	4.80	6.20	7.90	9.80	10.03	11.00	9.63	7.02	6.33	5.36

Peak density: 10 to 11 million cells/ml

Cell viability (Percentage)

Combination						h	ncubation	time (Da	y)					
Combination	0	1	3	4	5	6	7	8	9	10	11	12	13	14
SFM007AP + SFF006P	100	100	100	100	100	100	100	100	92	86	82	80	75	73
CD-CHO+ Feed	100	100	100	100	100	99	99	99	95	92	90	83	76	70

Sustained Cell Viability till Day 12

IVCC

Combination						Incub	ation time	(Day)					
Combination	1	3	4	5	6	7	8	9	10	11	12	13	14
SFM007AP + SFF006P	14.8	47	93.8	185.84	330.08	510.68	727.88	974.6	1232	1490.6	1716.92	1895	2037.08
CD-CHO+ Feed	14.1	41.24	85.64	170.84	302.84	472.04	684.44	922.4	1174.76	1422.32	1622.12	1782.32	1922.6

IgG Titer

Combination		Incubation time (Day)								
Combination	6	8	10	12	14					
SFM007L + SFF001P	0.239	0.316	0.488	0.569	0.962					
CD-CHO+ Feed	0.263	0.328	0.469	0.578	0.702					

PERFORMANCE SUMMARY

Trastuzumab producing CHO clone

Cultural Characteristics

Test parameter	HiMedia SFM007AP + SFF006P	Thermo CD-CHO + Efficient Feed B
Peak cell density	10 – 11 million cells/ml	10 – 11 million cells/ml
Peak cell viability	More than 80%	More than 80%
lgG titer	0.962g/L	0.702g/L
Specific productivity	5.3 pg/ cell / day	5.7 pg/ cell / day

Cell Viability More than 80% viability up to Day 12

Trastuzumab producing CHO clone

Protein Characterization

Charge Variant Analysis

	%Acidic variants	% Protein of Interest	% Basic variants
Trastuzumab innovator	31.53	60.11	8.36
SFM007AP + SFF006P	41.45	47.28	11.26
CD-CHO + Feed	42.36	45.19	12.45

Trastuzumab producing CHO clone

Glycan Pattern

		% Area	
Giycan type	Trastuzumab innovator	SFM007AP + SFF006P	CD-CHO + Efficient Feed B
Galactosylated	45.165	38.653	39.297
Agalactosylated	50.231	58.495	58.592
Fucosylated	40.696	37.156	37.767
Afucosylated	54.657	59.992	60.122
Unknown	3.24	2.852	2.112

Trastuzumab producing CHO clone

Potency and functional analysis

Test	Acceptance criteria #	HiMedia SFM007L + SFF001P	Competitor Basal medium + Feed supplement
Purity by SDS PAGE	-	Purity more than 80%	Purity more than 80%
Identity by Western Blot	-	Distinct 50kDa and 25kDa bands observed	Distinct 50kDa and 25kDa bands observed
Concentration by BCA assay	-	1.18mg/ml	1.08mg/ml
Residual CHO HCP	-	< 100ppm	< 100ppm
Residual CHO HCDNA	-	< 100ng/ dose	< 100ng/ dose
Isotyping (IgG subclass detection)	-	lgG1	lgG1
Biological potency by ADCC assay *	0.8 - 1.2	0.952	0.805
Binding potential by Her2 ECD Biomarker assay *	80 - 120%	94.9%	92.5%

References

- 1. European Pharmacopoeia Chapter 5.3, Statistical Analysis of Results of Biological Assays and Tests.
- 2. United States Pharmacopeia Chapters Bioassays <111> ,<1030>, <1032>, <1033>, <1034>
- Assay Acceptance Criteria for Multiwell-Plate–Based Biological Potency Assays -Draft for Consultation. BioProcess International 12(1) January 2014 pages 30-41 www.bioprocessintl.com/journal/2014/January/Assay-Acceptance-Criteria-for-Multiwell-PlateBased-Biological-Potency-Assays-349245.
- ICH Q2(R1): Validation of Analytical Procedures: Text and Methodology (<u>http://www.ich.org/fileadmin/Public_Web_Site/ICH_Products/Guidelines/Quality/Q2_R1/Step4/Q2_R1_Guideline.pdf</u>).
- 5. <u>https://www.fda.gov/downloads/Drugs/GuidanceComplianceRegulatoryInformation/Guidances/UCM27</u> <u>3910.pdf</u>
- 6. USP <1033> Validation of Biological Assays

BEVACIZUMAB CLONE

PERFORMANCE CHARACTERISTICS

Bevacizumab producing CHO clone

Experimental conditions

Culture parameters	Details				
Culture Vessel	: Scale up from Bioreactor tubes (50ml) to Sartorius B-Twin 10L Bioreactors Data represented here is for Sartorius B-Twin 10L Bioreactors				
Process type	: Fed-batch culture				
Combination details	 Medium SFM007AP + Feed (SFF006P) PowerCHO (Lonza) + Feed 				
Cell line	: Recombinant CHO clone producing mAb Bevacizumab				
Culture conditions	: 80rpm, 37°C				
Instruments used	 Sartorius B-Twin 10L Bioreactors Biochemical analyzer (Nova Biomedical) 				
No. of vessels per combination	:1				
Seeding density	: 0.5 million cells per ml				
Seeding viability	: 93.14%				
Duration of experiment	: 12 - 15 days				
	1. Cell density: Daily				
	2. Cell viability: Daily				
Test parameters and frequency	3. IVCC: Daily				
rest parameters and nequency	4. IgG Titer: Alternate day after Day 8				
	5. IgG Characterization: Harvested sample				
	6. IgG potency testing and functional assays				

Cell density (Million cells/ml)

Combination	Incubation time (Day)										
Combination	0	2	4	5	6	7	8	9	11	12	13
SFM007AP + SFF006P	0.46	0.76	2.63	4.88	6.03	8.70	7.68	10.00	6.10	5.20	5.10
PowerCHO + Feed	0.47	0.28	1.16	1.50	3.04	3.18	5.40	10.10	8.95	8.80	6.93

Peak density: 10 to 11 million cells/ml

Cell viability (Percentage)

Combination	Incubation time (Day)										
Combination	0	2	4	5	6	7	8	9	11	12	13
SFM033L + SFF001P	97	98	96	95	93	90	86	84	80	69	47
PowerCHO+ Feed	94	89	81	81	91	92	92	95	80	72	69

Sustained Cell Viability till Day 12

IVCC

Combination					Incubation time (Day)					
Combination	2	4	5	6	7	8	9	11	12	13
SFM033L + SFF001P	24.74	103.16	193.28	324.20	500.96	713.24	941.12	1423.52	1659.44	1859.96
PowerCHO+ Feed	10.97	50.36	82.28	136.76	211.40	314.36	500.36	957.56	1170.56	1359.32

IgG Titer

Combination	Incubation time (Day)					
Combination	9	11	13			
SFM032L + SFF001P	0.512	0.713	0.912			
PowerCHO + Feed	0.517	0.797	0.986			

PERFORMANCE SUMMARY

Bevacizumab producing CHO clone

Cultural Characteristics

Test parameter	HiMedia SFM007AP + SFF006P	Thermo PowerCHO + Feed
Peak cell density	10 – 11 million cells / ml	10 – 11 million cells / ml
Peak cell viability	More than 80%	More than 80%
lgG titer	0.912g/L	0.986g/L
Specific productivity	13.1 pg/ cell / day	13.3 pg/ cell / day

Bevacizumab producing CHO clone

Protein Characterization

Aggregation Analysis

	Total Aggregates (%)	Protein of interest %	% Fragmentation
Bevacizumab innovator	2.096	97.904	0.000
SFM007AP + SFF006P	1.467	75.957	22.577
PowerCHO + Feed	1.562	76.23	22.208

Charge Variant Analysis

	%Acidic variants	% Protein of Interest	% Basic variants
Bevacizumab innovator	6.893	74.739	18.369
SFM007AP + SFF006P	11.517	75.878	12.605
PowerCHO + Feed	12.366	74.069	13.565

Bevacizumab producing CHO clone

Bevacizumab producing CHO clone

Potency and functional analysis

Test	HiMedia SFM007AP + SFF006P	PowerCHO + Feed supplement	
Purity by SDS PAGE	Purity more than 80%	Purity more than 80%	
Identity by Western Blot	Distinct 50kDa and 25kDa bands observed	Distinct 50kDa and 25kDa bands observed	
Concentration by BCA assay	1.11mg/ml	1.07mg/ml	
Residual CHO HCP	< 100ppm	< 100ppm	
Residual CHO HCDNA	< 100ng/ dose	< 100ng/ dose	
Isotyping (IgG subclass detection)	lgG1	lgG1	
Biological potency by ADCC assay	0.993	0.961	
Binding potential by Her2 ECD Biomarker assay	87%*	85%#	

CUSTOMIZED BIOPROCESS OPTIMIZATION & MEDIA DEVELOPMENT

SERVICES

CUSTOM MEDIA and FEED MANUFACTURING SERVICE

Rely on us for optimizing media and feed for your high-value clones

3 MAJOR SERVICES PROVIDED BY HIMEDIA

1) MEDIA OPTIMIZATION

We optimize media & feed to enhance the yield of therapeutic protein.

2) SCALE UP

We can optimize your process from R & D scale to pilot scale to mini production scale (50L). This can be further scaled up to large scale.

3) OPTIMIZE PROCESS PARAMETER

Our manufacturing capacity of customized media in single lot ranges from 3 kg to 5 tons.

CUSTOM MEDIA and FEED MANUFACTURING SERVICE

CLONE SECURITY

At the core of a bio manufacturing process for recombinant proteins is the production cell line. It influences the productivity and product quality. Its characteristics also dictate process development, as the process is optimized to complement the producing cell to achieve the target productivity and quality.

Understanding the complexity and criticality of clone development procedure, we are firmly committed to honor your intellectual property. We have a complete understanding of the confidentiality of your process. All your information is handled confidentially and we assure you that it will never be disclosed. We sign a confidentiality agreement to ensure that the integrity of your clone and process is not compromised.

Each recombinant CHO clone engineered to produce therapeutic proteins exhibits unique metabolic demands. Optimal productivity of each clone at large scale requires clone-specific medium and feed.

With the help "Design of Experiments", our scientists follow a systematic approach for customization of media and feed. In a comprehensive approach, our R&D scientists can create an optimal nutritional environment, developing media formulations specifically suited to your working clone. We can formulate nutrient supplements to your specifications for bioreactor feed strategies.

Accuracy of the results is further assured by using High-throughput automated instruments and minimal manual intervention.

CUSTOM MANUFACTURING

SPENT MEDIA ANALYSIS SERVICE

Biochemical analysis Nova BioProfile Flex 2	Amino acid analysis Sykam Amino Acid Analyzer
<section-header></section-header>	<text></text>
nova	

Glucose, Lactate, Glutamine, Ammonia, Sodium, potassium, Calcium, pO₂, pCO₂

Free amino acids

SPENT MEDIA ANALYSIS SERVICE

Amino acid analysis Sykam Amino Acid Analyzer

Aspartic acid	Valine
Threonine	Methionine
Serine	Isoleucine
Glutamic acid	Leucine
Glutamine	Tyrosine
Proline	Phenylalanine
Glycine	Histidine
Alanine	Tryptophan
Cysteine	Lysine
Ammonia	Arginine

Limit of detection ~100nM

30

With immense pleasure we announce the

BIRAC INNOVATOR AWARD - 2020

Awarded To

BIRAC Innovato Award

HiMedia Laboratories Pvt. Ltd.

For

We congratulate the entire team who are involved in this Innovation project

Standing – Left to right – Dr. Girish Mahajan, Ms. Soni Shukla, Ms. Mausami Bhattacharya, Ms. Gauri Page, Ms. Shraddha Mane

The award was presented by Shri M. Venkaiah Naidu, Hon'ble Vice President of India and Dr. Harsh Vardhan Hon'ble Union Minister for Science & Technology, Earth Sciences and Health & Family Welfare, India, in presence of Mr. Uday Kotak, President CII, Dr. Kiran Mazumdar Shaw, Chairperson & Managing Director, Biocon Limited., India and Dr. Roderico H Ofrin, WHO Representative to India. Asia Africa Australia

OVERSEAS OFFICE

- Europe -HiMedia Laboratories GmbH, Marie-Curie-Str. 3, 64683, Einhausen, Germany. Tel : +49 6251 989 24 26 Fax : +49 6251 989 24 27 Email : infoeu@himedialabs.com

HiMedia is a global brand with network reach spanning over 150 countries across the world.

▲ HiMedia Corporate Headquarters in Thane

HIMEDIA

- CORPORATE OFFICE -

Plot No. C40, Road No. 21Y, MIDC, Wagle Industrial Area, Thane (West) - 400604, Maharashtra, India. Tel : +91-22-6147 1919 / 6116 9797 / 6903 4800 Fax : +91-22-6147 1920 Email : info@himedialabs.com North America South America Europe

OVERSEAS OFFICE

HiMedia Laboratories LLC, 507 School House Rd, Kennet Square 19348, PA, USA. Tel : +1-484-734-4401 Fax : +1-484-734-4402 Email : infous@himedialabs.com

For Website

HiMedia Laboratories Pvt. Ltd.

www.himedialabs.com

