Pseudomonas Agar (For Fluorescein)

Pseudomonas Agar (For Fluorescein) is recommended for the detection of fluorescein production by *Pseudomonas* species.

Composition

<table>
<thead>
<tr>
<th>Ingredients</th>
<th>Gms / Litre</th>
</tr>
</thead>
<tbody>
<tr>
<td>Casein enzymic hydrolysate</td>
<td>10.000</td>
</tr>
<tr>
<td>Proteose peptone</td>
<td>10.000</td>
</tr>
<tr>
<td>Dipotassium phosphate</td>
<td>1.500</td>
</tr>
<tr>
<td>Magnesium sulphate</td>
<td>1.500</td>
</tr>
<tr>
<td>Agar</td>
<td>15.000</td>
</tr>
<tr>
<td>Final pH (at 25°C)</td>
<td>7.0±0.2</td>
</tr>
</tbody>
</table>

Formula adjusted, standardized to suit performance parameters

Directions

Suspend 38 grams in 1000 ml distilled water containing 10 ml glycerol. Heat to boiling to dissolve the medium completely. Sterilize by autoclaving at 15 lbs pressure (121°C) for 15 minutes. Mix well and pour into sterile Petri plates.

Principle And Interpretation

Pseudomonas Agar (For Fluorescein) is based on the formula described by King et al (1) and as modified in the U.S. Pharmacopeia (2) for the detection of fluorescein production a water soluble, chloroform insoluble fluorescent pigment by *Pseudomonas* species (3). The medium enhances the elaboration of fluorescein by *Pseudomonas* and inhibits the pyocyanin formation. The fluorescein pigment diffuses from the colonies of *Pseudomonas* into the agar and shows yellow fluorescent colouration. Some *Pseudomonas* strains produce small amounts of pyocyanin resulting in a yellow-green colouration.

Casein enzymic hydrolysate and proteose peptone provide the essential nitrogenous nutrients, carbon, sulphur and trace elements for the growth of *Pseudomonas*. Dipotassium phosphate buffers the medium while magnesium sulphate provides necessary cations for the activation of fluorescein production. Salt concentration exceeding 2% affects pigment production. UV illumination may be bactericidal, so make sure that there is good growth before placing culture under UV light (3).

A pyocyanin-producing *Pseudomonas* strain will usually also produce fluorescein. It must, therefore, be differentiated from other simple fluorescent pseudomonads by other means. Temperature can be a determining factor as most other fluorescent strains will not grow at 35°C. Rather, they grow at 25-30°C (3).

Quality Control

Appearance

Cream to yellow homogeneous free flowing powder

Gelling

Firm, comparable with 1.5% Agar gel

Colour and Clarity of prepared medium

Yellow coloured clear to slightly opalescent gel forms in Petri plates

Reaction

Reaction of 3.8% w/v aqueous solution (containing 1% v/v glycerol) at 25°C. pH : 7.0±0.2

pH

6.80-7.20

Cultural Response

M120: Cultural characteristics observed with added 1% glycerol after an incubation at 35-37°C for 18-24 hours.

<table>
<thead>
<tr>
<th>Organism</th>
<th>Inoculum (CFU)</th>
<th>Growth</th>
<th>Recovery</th>
<th>Colour of colony</th>
</tr>
</thead>
</table>

Please refer disclaimer Overleaf.
Pseudomonas aeruginosa
ATCC 17934
50-100 luxuriant >=70% greenish yellow

Pseudomonas aeruginosa
ATCC 27853
50-100 luxuriant >=70% greenish yellow

Pseudomonas aeruginosa
ATCC 9027
50-100 luxuriant >=70% greenish yellow

Storage and Shelf Life
Store below 30°C in tightly closed container and the prepared medium at 2 - 8°C. Use before expiry date on the label.

Reference